Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

نویسندگان

  • Shijie Zhong
  • Michael Ritzwoller
  • Nikolai Shapiro
  • William Landuyt
  • Jinshui Huang
  • Paul Wessel
چکیده

[1] A long-standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half-space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small-scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high-resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of 300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super-swell excluded can be fit well with a HSC model till 80–85 Ma and a plate model for older seafloor, particularly, with the HSC-Plate depth-age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth-age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts’ HSCPlate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super-swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super-swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly lithospheric reheating associated with ‘‘trapped’’ heat below old lithosphere (Huang and Zhong, 2005), play an essential role in causing the deviations in topography from the HSC model prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal evolution of the oceanic lithosphere: an alternative view

The most common model used for representing the evolution with age of the oceanic lithosphere is the ‘plate model’ where the temperature is set at a fixed depth, called the base of the plate. This ‘base of the plate’ has no physical meaning but this model provides a mathematical substitute for a system where small-scale convection occurs through instabilities growing at the base of the cooling ...

متن کامل

Archean Geodynamics and the Thermal Evolution of Earth

Possible geodynamic regimes that may have prevailed in the Archean are investigated by back-tracking the thermal history of Earth from the present-day conditions. If the temporal evolution of plate-tectonic convection is modulated by strong depleted lithosphere created at mid-ocean ridges, more sluggish plate tectonics is predicted when the mantle was hotter, contrary to commonly believed, more...

متن کامل

Lithospheric cooling trends and deviations in oceanic PP-P and SS-S differential traveltimes

[1] The thermal and compositional structure of oceanic lithosphere, which exerts an important control on plate behavior, is still debated. Our set of 60,000 PP-P and SS-S traveltime differences with oceanic PP and SS bounce points provides a good constraint on both compressionaland shear-wave velocity. By calculating traveltimes for thermal models that are converted to seismic structures with a...

متن کامل

Linking mantle upwelling with the lithosphere decent and the Japan Sea evolution: a hypothesis

Recent seismic tomography studies image a low velocity zone (interpreted as a high temperature anomaly) in the mantle beneath the subducting Pacific plate near the Japanese islands at the depth of about 400 km. This thermal feature is rather peculiar in terms of the conventional view of mantle convection and subduction zones. Here we present a dynamic restoration of the thermal state of the man...

متن کامل

Cooling history of the Pacific lithosphere

Plate tectonics is expressed most simply in oceanic plates where a thermal boundary layer or blithosphereQ forms and thickens as the plate cools during its journey away from mid-ocean ridges. Numerous studies based dominantly on surface observables have established that the oceanic lithosphere, particularly across the Pacific, does not cool continuously as it ages. Based on a seismic model of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006